
Getting Started with Serial and Parallel MATLAB on Odyssey

CONFIGURATION

Start MATLAB. Configure MATLAB to run parallel jobs on your cluster by calling configCluster.

configCluster only needs to be called once per version of MATLAB.

>> configCluster

>> % Must set QueueName and WallTime before submitting jobs to

>> % ODYSSEY. E.g.

>> c = parcluster;

>> c.AdditionalProperties.QueueName = 'queue-name';

>> c.AdditionalProperties.WallTime = '01:00:00';

>> c.saveProfile

Jobs will now default to the cluster rather than submit to the local machine.

CONFIGURING JOBS

Prior to submitting the job, we can specify various parameters to pass to our jobs, such as queue name,

walltime, etc.

NOTE: Any parameters specified using the below workflow will be persistent between MATLAB

sessions.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Set the account name to use

>> c.AdditionalProperties.Account = ‘MY-ACCOUNT’;

>> % Request a GPU (not to exceed 8 per node)

>> c.AdditionalProperties.GpusPerNode = 1;

>> % Set memory to 4 GB per core

>> c.AdditionalProperties.MemUsage = ‘4096’;

>> % Specify a number of processors per node to run on

>> c.AdditionalProperties.ProcsPerNode = 12;

>> % Request to run on the ‘general’ queue [REQUIRED]

>> c.AdditionalProperties.QueueName = ‘general’;

>> % Set the wall time to 1.5 hours [REQUIRED]

>> c.AdditionalProperties.WallTime = '01:30:00';

Save changes after modifying AdditionalProperties fields.

>> c.saveProfile

To see the values of the current configuration options, call the specific AdditionalProperties name.

>> % To view current configurations

>> c.AdditionalProperties.WallTime

To clear a value, assign the property an empty value (‘’, 0, or false).

>> % Disable using GPUs

>> c.AdditionalProperties.GpusPerNode = 0;

INTERACTIVE PARALLEL JOBS

Use the parpool command to run synchronous jobs on the cluster. See the MATLAB documentation

for more help on parpool.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Open a pool of 48 workers

>> p = c.parpool(48);

Starting parallel pool (parpool) using the 'odyssey local R2017a'

profile ...

connected to 48 workers.

>> % Run parfor or spmd code…

parfor i = …

end

>> % Let the pool of workers time out or close the pool explicitly by

>> % calling delete
>> p.delete

SERIAL BATCH JOBS

Use the batch command to submit asynchronous jobs to the cluster. The batch command will return

a job object which is used to access the output of the submitted job. See the MATLAB documentation

for more help on batch.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit job to query where MATLAB is running on the cluster

>> j = c.batch(@pwd, 1, {});

>> % Query job for state

>> j.State

>> % If state is finished, fetch the results

>> j.fetchOutputs{:}

>> % Delete the job after the results are no longer needed

>> j.delete

To retrieve a list of currently running or completed jobs, call parcluster to retrieve the cluster

object. The cluster object stores an array of jobs that were run, are running, or are queued to run. This

allows us to fetch the results of completed jobs. Retrieve and view the list of jobs as shown below.

>> c = parcluster;

>> jobs = c.Jobs

Once we’ve identified the job we want, we can retrieve the results as we’ve done previously.

fetchOutputs is used to retrieve function output arguments; if using batch with a script, use load

instead. Data that has been written to files on the cluster needs be retrieved directly from the file

system.

To view results of a previously completed job:

>> % Get a handle on job with ID 2

>> j2 = c.Jobs(2);

NOTE: You can view a list of your jobs, as well as their IDs, using the above c.Jobs command.

>> % Fetch results for job with ID 2

>> j2.fetchOutputs{:}

>> % If the job produces an error view the error log file

>> c.getDebugLog(j.Tasks(1))

NOTE: When submitting independent jobs, with multiple tasks, you will have to specify the task number.

PARALLEL BATCH JOBS

Users can also submit parallel workflows with batch. Let’s use the following example for a parallel job.

We’ll use the batch command again, but since we’re running a parallel job, we’ll also specify a MATLAB

Pool.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit a batch pool job using 4 workers for 16 simulations

>> j = c.batch(@parallel_example, 1, {}, ‘Pool’, 4);

>> % View current job status

>> j.State

>> % Fetch the results after a finished state is retrieved

>> j.fetchOutputs{:}

ans =

 8.8872

The job ran in 8.89 seconds using 4 workers. Note that these jobs will always request N+1 CPU cores,

since one worker is required to manage the batch job and pool of workers. For example, a job that

needs eight workers will consume nine CPU cores.

We’ll run the same simulation, but increase the Pool size. This time, to retrieve the results at a later

time, we’ll keep track of the job ID.

NOTE: For some applications, there will be a diminishing return when allocating too many workers, as

the overhead may exceed computation time.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Submit a batch pool job using 8 workers for 16 simulations

>> j = c.batch(@parallel_example, 1, {}, ‘Pool’, 8);

>> % Get the job ID

>> id = j.ID

Id =

 4

>> % Clear workspace, as though we quit MATLAB

>> clear j

Once we have a handle to the cluster, we’ll call the findJob method to search for the job with the

specified job ID.

>> % Get a handle to the cluster

>> c = parcluster;

>> % Find the old job

>> j = c.findJob(‘ID’, 4);

>> % Retrieve the state of the job

>> j.State

ans

finished

>> % Fetch the results

>> j.fetchOutputs{:};

ans =

4.7270

>> % If necessary, retrieve output/error log file

>> c.getDebugLog(j)

The job now runs 4.73 seconds using 8 workers. Run code with different number of workers to

determine the ideal number to use.

Alternatively, to retrieve job results via a graphical user interface, use the Job Monitor (Parallel >

Monitor Jobs).

DEBUGGING

If a serial job produces an error, we can call the getDebugLog method to view the error log file.

>> j.Parent.getDebugLog(j.Tasks(1))

When submitting independent jobs, with multiple tasks, you will have to specify the task number. For

Pool jobs, do not deference into the job object.

>> j.Parent.getDebugLog(j)

The scheduler ID can be derived by calling schedID
>> schedID(j)

ans

25539

TO LEARN MORE

To learn more about the MATLAB Parallel Computing Toolbox, check out these resources:

• Parallel Computing Coding Examples

• Parallel Computing Documentation

http://www.mathworks.com/products/parallel-computing/code-examples.html
http://www.mathworks.com/help/distcomp/index.html

• Parallel Computing Overview

• Parallel Computing Tutorials

• Parallel Computing Videos

• Parallel Computing Webinars

http://www.mathworks.com/products/parallel-computing/index.html
http://www.mathworks.com/products/parallel-computing/tutorials.html
http://www.mathworks.com/products/parallel-computing/videos.html
http://www.mathworks.com/products/parallel-computing/webinars.html

