
Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 1	

Extended Unix: sed, awk, grep, and
bash scripting basics
Scott Yockel, PhD
Harvard - Research Computing

What is Research Computing?
Faculty of Arts and Sciences (FAS) department that handles non-
enterprise IT requests from researchers. (Contact HUIT for most
Desktop, Laptop, networking, printing, and email issues.)
•  RC Primary Services:

–  Odyssey Supercomputing Environment
–  Lab Storage
–  Instrument Computing Support
–  Hosted Machines (virtual or physical)

•  RC Staff:
–  20 staff with backgrounds ranging from systems administration to

development-operations to Ph.D. research scientists.
–  Supporting 600 research groups and 3000+ users across FAS, SEAS,

HSPH, HBS, GSE.
–  For bio-informatics researchers the Harvard Informatics group is closely

tied to RC and is there to support the specific problems for that domain.

2

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 2	

3

Intro to Odyssey
Thursday, February 2nd 11:00AM – 12:00PM NWL 426

Intro to Unix
Thursday, February 16th 11:00AM – 12:00PM NWL 426

Extended Unix
Thursday, March 2nd 11:00AM – 12:00PM NWL 426

Modules and Software
Thursday, March 16th 11:00AM – 12:00PM NWL 426

Choosing Resources Wisely
Thursday, March 30th 11:00AM – 12:00PM NWL 426

Troubleshooting Jobs
Thursday, April 6th 11:00AM – 12:00PM NWL 426

Parallel Job Workflows on Odyssey
Thursday, April 20th 11:00AM – 12:00PM NWL 426  
 
Registration not required — limited seating.

FAS Research Computing will be offering a Spring
Training series beginning February 2nd. This series will
include topics ranging from our Intro to Odyssey
training to more advanced job and software topics.

In addition to training sessions, FASRC has a large
offering of self-help documentation at  
https://rc.fas.harvard.edu.

We also hold office hours every Wednesday from
12:00PM-3:00PM at 38 Oxford, Room 206.  
https://rc.fas.harvard.edu/office-hours

For other questions or issues, please submit a ticket on
the FASRC Portal https://portal.rc.fas.harvard.edu  
Or, for shorter questions, chat with us on Odybot
https://odybot.rc.fas.harvard.edu

FAS Research Computing
https://rc.fas.harvard.edu

https://rc.fas.harvard.edu

4

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 3	

Unix Command-Line Basics
•  Understanding the Terminal and Command-line:

•  STDIN, STDOUT, STDERR, |
•  env, ssh, exit, man, clear

•  Working with files/directories:
•  ls, mkdir, rmdir, cd, pwd, cp, rm, mv
•  scp, rsync, SFTP

•  Viewing files contents:
•  less

•  Searching with REGEXP – stdin/files:
•  *

•  Basic Linux System Commands:
•  which

5

Objectives
•  Unix commands for searching

–  REGEX
–  grep
–  sed
–  awk

•  Bash scripting basics
–  variable assignment

•  integers
•  strings
•  arrays

–  for loops

6

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 4	

REGEX - Regular Expression
•  Pattern matching for a certain amount of text

–  Single character: O
•  Odybot isn’t human

–  Character sets: [a-z]
•  Odybot isn’t human

–  Character sets: [aei]
•  Odybot isn’t human

–  Character sets: [0-9]
•  Odybot isn’t human

–  Non printable characters
•  \t : tab
•  \r : carriage return
•  \n : new line (Unix)
•  \r\n : new line (Windows)
•  \s : space

7

REGEX - Regular Expression
•  Pattern matching for a certain amount of text

–  Special Characters
•  . period or dot: match any character (except new line)
•  \ backslash: make next character literal
•  ^ caret: matches at the start of the line
•  $ dollar sign: matches at the end of line
•  * asterisk or star: repeat match
•  ? question mark: preceding character is optional
•  + plus sign:
•  () parentheses: create a capturing group
•  [] square bracket: sequence of characters

–  also seen like [[:name:]] or [[.az.]]
•  { } curly brace: place bounds

–  {1,6}

8

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 5	

grep - GNU REGEX Parser
•  grep is a line by line parser of stdin and by default

displays matching lines to the regex pattern.
•  syntax:

–  using stdin: cat file | grep pattern
–  using files: grep pattern file

•  common options:
–  c : count the number of occurrences
–  m # : repeat match # times
–  R : recursively through directories
–  o : only print matching part of line
–  n : print the line number
–  v : invert match, print non-matching lines

9

sed - stream editor
•  sed takes a stream of stdin and pattern matches and

returns to stdout the replaced text.
–  Think amped-up Windows Find & Replace.

•  syntax:
–  using stdin: cat file | sed ‘command’
–  using files: sed ‘command’ file
–  common uses:

•  4d : delete line 4
•  2,4d : delete lines 2-4
•  2w foo : write line 2 to file foo
•  /here/d : delete line matching here
•  /here/,/there/d : delete lines matching here to there
•  s/pattern/text/ : switch text matching pattern
•  s/pattern/text/g: switch text matching pattern globally
•  /pattern/a\text : append line with text after matching pattern
•  /pattern/c\text : change line with text for matching pattern

10

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 6	

sed - Examples
•  Take the time to create abc.txt file below and try out examples

11

abc
def
ghi
jkl
mno
pqr
stu
vwx
yz

sed ‘2,4d’ abc.txt

abc
mno
pqr
stu
vwx
yz

abc
def
ghi
jkl
mno
pqr
stu
vwx
yz

sed ‘s/abc/123/’ abc.txt

123
def
ghi
jkl
mno
pqr
stu
vwx
yz

Objectives
•  Unix commands for searching

–  REGEX
–  grep
–  sed
–  awk

•  Bash scripting basics
–  variable assignment

•  integers
•  strings
•  arrays

–  for loops

12

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 7	

awk
•  command/script language that turns text into records and fields

which can be selected to display as kind of an ad hoc database.
With awk you can perform many manipulations to these fields or
records before they are displayed.

•  syntax:
–  using stdin: cat file | awk ‘command’
–  using files: awk ‘command’ file

•  concepts:
–  Fields:

•  fields are separated by white space, or by regex FS.
•  The fields are denoted $1, $2, ..., while $0 refers to the entire line.
•  If FS is null, the input line is split into one field per character.

–  Records:
•  records are separated by \n (new line), or by regex RS.

13

awk
•  A pattern-action statement has the form:

•  A missing {action} means print the line
•  A missing pattern always matches.

•  Pattern-action statements are separated by newlines or semicolons.
There are three separate action blocks:

14

BEGIN {action}
{action}
END {action}

pattern {action}

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 8	

Simple awk example

15

alpha beta gamma
delta epsilon phi

awk ‘{print $1}’ alpha.txt

alpha.txt

alpha
delta

awk ‘{print $1, $3}’ alpha.txt alpha gamma
delta phi

awk - built in variables
•  The awk program has some internal environment variables that are

useful (more exist and change upon platform)
–  NF – number of fields in the current record
–  NR – ordinal number of the current record
–  FS – regular expression used to separate fields; also settable by option -Ffs

(default whitespace)
–  RS – input record separator (default newline)
–  OFS – output field separator (default blank)
–  ORS – output record separator (default newline)

16

awk '{OFS=",";print $1, $3}' alpha.txt alpha,gamma
delta,phi

awk -Fa ‘{print $2}' alpha.txt lph
 epsilon phi

alpha beta gamma
delta epsilon phi

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 9	

awk - statements
•  An action is a sequence of statements. A statement can be one of

the following:
–  if (expression) statement [else statement]
–  while (expression) statement
–  for (expression ; expression ; expression) statement
–  for (var in array) statement
–  do statement while (expression)

17

awk '{if (NR > 1) print $2}' alpha.txt epsilon

awk '{if ($1 == "alpha") print}' alpha.txt alpha beta gamma

alpha beta gamma
delta epsilon phi

awk - variables
•  Using variables:

–  You can use the stock $1, $2, $3, … fields and set them to variables in the action
block.

18

awk '{if (NR == 1) a=$1; else b=$1}END{print a, b}' alpha.txt

alpha delta

awk '{if ($1 == "alpha") a=123; else b=456}
END{print a " + " b}' alpha.txt

123 + 456

alpha beta gamma
delta epsilon phi

awk '{if ($1 == "[a-z]") ; sum+=1}END{print "Total: " sum}' alpha.txt

Total: 2

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 10	

awk - mathematics
The operators in AWK,

 + addition, - subtraction, * multiplication, / division, and % modulus.

Assignment = += -= *= /= %= ^=.
•  Both absolute assignment (var = value) and operator-assignment

(the other forms) are supported.

Trigonomic function: cos(), sin(),
Roots: sqrt()

19

awk - formatted printing
•  awk accepts all standard printf statements
•  syntax: printf(“format”,expression list)

20

ps S -o pid,nlwp,%mem,rss,vsz,%cpu,cputime,args --forest -u $USER |\
awk '{pmem+=$3;rss+=$4;vsz+=$5; print $0}
END{printf("MEM SUM: %4.1f%% %3.1fGB %3.1fGB \n", pmem,rss/1028/1028,vsz/
1024/1024)}'

 PID NLWP %MEM RSS VSZ %CPU TIME COMMAND
27536 1 0.0 2052 99920 0.0 00:00:00 sshd: syockel@pts/86
27548 1 0.0 2044 120932 0.3 00:00:00 _ -bash
22905 1 0.0 1252 106100 0.0 00:00:00 _ /bin/bash ./ps.sh
22908 1 0.0 1156 122668 6.0 00:00:00 _ ps S -o pid,nlwp,
22909 1 0.0 896 105956 0.0 00:00:00 _ awk {pmem+=$3;rss
26570 1 0.0 2008 99920 0.0 00:00:00 sshd: syockel@pts/81
26587 1 0.0 2052 120932 0.0 00:00:00 _ -bash
24831 1 0.0 5088 149524 0.0 00:00:00 _ vim user_chk.sh
MEM SUM: 0.0% 0.0GB 0.9GB

printf created END text

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 11	

Objectives
•  Unix commands for searching

–  REGEX
–  grep
–  sed
–  awk

•  Bash scripting basics
–  variable assignment

•  integers
•  strings
•  arrays

–  for loops

21

Shell Script Basics
•  To take advantage of cluster compute, you can predefine your

commands in a shell script file to be executed by a job scheduler.
–  bash: bourne again shell
–  csh: c-like shell
–  zsh: shell for modern times

22

#!/bin/bash

Setting vars
var1=input.txt
dir1=test.d

Executing commands
echo “Var 1 is set to: $var1”
cd $dir1
pwd

sha-bang line defines the shell

defines comments the remain line out

Assign variables using “ = “ as either string or integer

Use a variable with “$”

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 12	

Shell Script Basics
•  If string contains whitespace, it must be included in double quotes.

23

#!/bin/bash

Setting vars
var1=“1.txt 2.txt 3.txt 4.txt”

For loop
for i in $var1 ; do

echo $i
done

string variable

looping through each element in the string

Shell Script Basics
•  Bash allows array variables

24

#!/bin/bash

j=0
for i in {01..05} ; do
 j=$((j+1))
 alpha[$j]=$i
 echo ${alpha[*]}
done

{ } defines a range

increment j

use j to index alpha array

print all elements of alpha array

Spring	2017	

h-ps://rc.fas.harvard.edu/training/
spring-2017/ 		 13	

Questions ???

Scott Yockel, PhD
Harvard - Research Computing

SIGHPC: BigData
Supercomputing’16

