
Perl in a Day
Peeking Inside the Oyster

Biology-Flavored Perl Overview

Amir Karger – amir_karger@hms.harvard.edu
Research IT Group, HMS

software.rc.fas.harvard.edu/training

Perl in a Day

2/5/12 Perl in a Day - Introduction 2

Class Overview

· Introduction – Why learn Perl?
· Scripting – Reproducible Science
· Variables – Making Programs Reusable
· Control Structures – Doing Things Lots of Times (Or Not)
· Data Munging – Perl for Bioinformatics
· Arrays and Hashes – Groups of Things
· Subroutines & Modules – Making Programs Really Reusable
· Objects – Complex Data, Complex Workflow
· BioPerl – Doing (More) Bio With Perl

Perl in a Day

2/5/12 Perl in a Day - Introduction 3

Research Computing Commercial

· Knowledge + experience in science + computers
·  We worry about computers so you can do science
·  Backup, installation, security, scripting…

· FAQ and more: http://rc.fas.harvard.edu
· Tickets

·  Research questions to rchelp@fas.harvard.edu
·  Other questions to help@fas.harvard.edu
·  The more detail, the better

· Talk to us before you do lots of work
·  Save time
·  Do better science

Perl in a Day

2/5/12 Perl in a Day - Introduction 4

The Bad News

· You can't learn programming in such a short time
· Too much syntax
· Too many functions
· Too many concepts
· Too many special cases (especially in Perl)

Perl in a Day

2/5/12 Perl in a Day - Introduction 5

The Good News

· You can do a lot knowing just a little Perl
· Perl is good at scientific computing
· Perl is fun!

Perl in a Day

2/5/12 Perl in a Day - Introduction 6

Objectives

· Understand the basics of Perl
· Focus on what kinds of things Perl can do
· Don't worry too much about syntax
· Learn to read, modify, and run Perl scripts
· Learn some mistakes to avoid
· Answer your questions (maybe after class)
· Special focus on data munging
· Data what?

Perl in a Day

2/5/12 Perl in a Day - Introduction 7

Data Munging
· Doing stuff with data
· Getting data from many sources
· Keyboard, local files, databases, ftp, web, …

· Reading (and understanding) data
· Binary, Text, HTML, XML, zip, Graphics, …
· BIG files, many files

· Combining data
· Analyzing data (e.g., mathematically)
· Filtering data
· Outputting data
· Lots of scientific computing is just data munging
· Perl is very (very) good at data munging

Perl in a Day

2/5/12 Perl in a Day - Introduction 8

Why Perl?

· Easy to learn and quick to write
· Rapid prototyping
· But scalable to large programs
· Kitchen sink language
· Combines parts of many other tools (C, sed, awk, sh, …)
· Call other programs
· Cross-Platform: Windows, Mac, UNIX
· Open Source – lots of code already available
· TMTOWTDI - “There’s more than one way to do
it”
· Very popular in Bioinformatics

Perl in a Day

2/5/12 Perl in a Day - Introduction 9

What Makes Perl Different?

· More like English, less like Math
· (Pluses or minuses…)
· More messy (writing vs. reading)
· Less orthogonal (TMTOWTDI vs. inelegance)
· Huge set of libraries available (which is best?)
· Regular expressions (power vs. complexity)
· Interpreted, not compiled (fast writing vs. running)
· DWIM – "Do what I mean" (convenience vs.
confusion)

Perl in a Day

2/5/12 Perl in a Day - Introduction 10

Why Not Perl? (A Biased View)

· Perl is not the fastest-running language
· Not good for doing huge amounts of very complex math
· But you often save time by developing code quickly
· Perl allows you to write messy code
· "Write-only language"
· But messy is fine in certain contexts
· Perl can help you write clean code
· Not originally designed for huge programs
· Older versions of Perl made it hard
· But plenty of huge programs have been written in Perl
· This class isn't for people writing huge programs

Perl in a Day

2/5/12 Perl in a Day - Introduction 11

What Can Perl Do for Me?
· Automate other programs
· Run 1,000 BLASTs
· High-throughput downloading and analysis of biological databases

· Analyze, filter, merge, reformat data
· Munge results of other programs
· Write one-liners to explore your data

· Interact with SQL databases (MySQL, Oracle, etc.)
· Store, read, change structured data

· Create interactive CGI web pages
· UCSC, BLAST, a simple login form

· Other bioinformatics topics
· Population Genetics, Ontologies, Alignments, Graphing, …

Perl in a Day

2/5/12 Perl in a Day - Introduction 12

Getting Started

· Where is Perl?
· On any UNIX (Linux, Mac) computer
· On the HMS cluster (orchestra.med.harvard.edu)
· On the FAS cluster (odyssey.fas.harvard.edu)
· Windows: download from
http://www.activestate.com/Products/ActivePerl

· Don’t run on your own laptop!
· Unless you have BLAST+ installed

Perl in a Day

2/5/12 Perl in a Day - Introduction 13

Logging In (If Necessary)

Terminal program: putty.exe
(Google Putty and SSH)

HMS cluster "head" node:

 orchestra.med.harvard.edu

SSH, a secure telnet. (Port

will change to 22)

Perl in a Day

2/5/12 Perl in a Day - Introduction 14

·  Run Xming on your desktop
(for editing files with gedit)

·  Connect to Odyssey with
SecureCRT
·  Use Keyboard Interactive only

·  Start an interactive shell
·  Lets you run long programs

from command line
·  module load hpc/perl5mods

·  For Bioperl, fancy Perl stuff

Logging in to Odyssey

Perl in a Day

2/5/12 Perl in a Day - Introduction 15

·  Get the code
cp -r /n/nobackup2/workshop_perl .

·  Change to the sample directory
·  cd workshop_perl
·  Class demos are in class_demos_UNIX, etc.

·  List of programs in class order (in demo directory)
·  more MANIFEST

Getting the Sample Code (Odyssey)

Perl in a Day

2/5/12 Perl in a Day - Introduction 16

·  Get the zipped code
http://software.rc.fas.harvard.edu/training/perl/unixcode.zip

·  (Mac: open a Terminal window)
·  Unzip code

·  unzip unixcode.zip

·  Change to the sample directory
·  cd unixcode
·  Class demos are in class_demos_UNIX, etc.

·  List of programs in class order (in demo directory)
·  more MANIFEST

Getting the Sample Code (UNIX/Mac)

Perl in a Day

2/5/12 Perl in a Day - Introduction 17

·  Open a Cygwin window
·  Start->All Programs->Cygwin->Cygwin Bash Shell

·  Get the zipped code
·  ftp://ftp.cgr.harvard.edu/data/akarger/perlclass/doscode.zip

·  Unzip code
·  unzip doscode.zip

·  OR double-click doscode.zip and copy code folder to
Desktop

·  Change to the code directory
·  cd Desktop (if necessary)
·  cd code

Getting the Sample Code (Windows)

Perl in a Day

2/5/12 Perl in a Day - Scripting 18

Getting Ready to Run on orchestra (if applicable)

· Use LSF (Do this just once, each time you log in)
· bsub –Is –q shared_int_2h bash

Perl in a Day

2/5/12 Perl in a Day - Introduction 19

·  Make sure Perl exists, find out what version it is
·  perl -v

·  How do I get help?
·  perldoc perl (general info, TOC)
·  perldoc perlop (operators like +, *)
·  perldoc perlfunc (functions like chomp: > 200!)
·  perldoc perlretut (regular expressions: /ABC/)
·  perldoc perlreref (regular expression reference)
·  perldoc -f chomp (what does chomp function do?)
·  perldoc File::IO (find out about a Perl module)

·  Type q to quit when viewing help pages,
·  Space bar for next page

Before you start using Perl…

Perl in a Day

2/5/12 Perl in a Day - Introduction 20

Editing your files graphically

· Use an editor to write your programs
· pico, nano, emacs, vi (or vim) are non-graphical options
· Odyssey: gedit &
· & lets you type in SecureCRT window while gedit is open
· Running Xming lets gedit appear on your desktop
· Mac: use TextEdit, save as PLAIN text (Prefs)
· Windows: http://winscp.net edits remove files
· Notepad or Wordpad to edit local files

Perl in a Day

2/5/12 Perl in a Day - Introduction 21

Editing your files with pico
· Use an editor to write your programs
· pico, nano, emacs, vi (or vim) are some UNIX options
· Just type pico or pico blah.pl
· Type your program
· "Enter" to start a new line
· Arrow keys, not mouse, to move around
· Common commands at bottom of screen
· Control-O Save (Don't type Control-S!!!)
· Control-X Quit

Perl in a Day

2/5/12 Perl in a Day - Introduction 22

(Odyssey) Exercise – "Hello, World!"

print "Hello, World!\n"; # A comment

[iliadaccess02:workshop_perl] perl hello.pl
Hello, World!

You have written your first Perl program!

· Create a new file in gedit
· Type in the above program (just one line)
· Save it as hello.pl
· Run it from the command line (perl hello.pl)

Perl in a Day

2/5/12 Perl in a Day - Introduction 23

(Mac) Exercise – "Hello, World!"

print "Hello, World!\n"; # A comment

% perl hello.pl
Hello, World!

You have written your first Perl program!

· Create a file called hello.pl in TextEdit
· Type in the above program (just one line)
· Save it as PLAIN text (not rich text)
· Run it from the Terminal (perl hello.pl)

Perl in a Day

2/5/12 Perl in a Day - Introduction 24

(UNIX) Exercise – "Hello, World!"

print "Hello, World!\n"; # A comment

% perl hello.pl
Hello, World!

You have written your first Perl program!

· Create a file called hello.pl (pico hello.pl)
· Type in the above program (just one line)
· Save it (Control-O) and exit pico (Control-X)
· Run it from the command line (perl hello.pl)

Perl in a Day

2/5/12 Perl in a Day - Introduction 25

(Windows) Exercise – "Hello, World!"

print "Hello, World!\n"; # A comment

% perl hello.pl
Hello, World!

You have written your first Perl program!

· Create a file called hello.pl with Notepad
· Type in the above program (just one line)
· Save it as hello.pl (Save as a “Text file”)
· Run it (perl hello.pl in the Cygwin window)

Perl in a Day

2/5/12 Perl in a Day - Introduction 26

First Perl Program

#!perl –w (or maybe #!/usr/bin/perl –w)

Comment - any text after # sign - doesn’t do anything

Hack into government computers...

\n makes a new line (inside "double quotes")

print "Hello, World!\n";

Many Perl scripts start with a #! line
•  For now, ignore this
•  The -w is like typing "use warnings"

Perl in a Day

2/5/12 Perl in a Day - Introduction 27

First Perl Program II

· “;” is used at the end of each command
· A command is usually one line
· But multi-line commands, multi-command lines OK
· Semicolons are (sometimes) optional
· Warning: Perl is case sensitive!
· print is not the same as Print
· $bio is not the same as $Bio

print "Hello, World!\n"; # A comment

Perl in a Day

2/5/12 Perl in a Day - Introduction 28

First Perl Program III

· print is a function which prints to the screen
· print("Hi") is (usually) the same as print "Hi"
· Inside "double quotes", \n starts new line, \t prints tab
· A function is called with zero or more arguments

·  Arguments are separated by commas
·  print takes as many arguments as you give it

print ""; # legal, prints nothing, not even \n
print("Hi", "There"); # prints HiThere
print(Hi); # illegal (calls the function Hi)
print(1+1, 2+2, "\n"); # prints 24 and a newline

Scripting

Reproducible Science
via

Scripting command-line calls

Perl in a Day

3-Minute Introduction to Biology
· BLAST program
· Finds DNA or protein sequences similar to your query sequence(s)
· Better results have lower E-value (e.g., 1e-5 is better than .03)
· Our results will be in tabular format
Query_id123 Subject_id456 92.20 510 86 1 602 1101 29 560 1e-20 459

· A hit means part or all of the query sequence is similar to a subject
sequence in the big search database

· FASTA file format
· Standard format for storing DNA or protein sequences
· Identifier, (optional) description, sequence
>blah|12345 Cytochrome c oxidase
ACTGGTCGAAGTTGGCGA
ACGGTTGGTACGCA

· Examples are biology-specific, but the Perl ideas aren’t

2/5/12 Perl in a Day - Introduction 30

Perl in a Day

2/5/12 Perl in a Day - Scripting 31

Embedding Shell Commands

Search for text string “Cgla” in BLAST output file:
(UNIX, Mac, Cygwin in Windows. No Cygwin? Use “find”)

system("blastn –task blastn –db fungi –query one_seq.fasta
 –outfmt 6 -evalue 1e-4 > one_seq.blast");

system("ls"); # list files in current directory

Use shell commands in Perl programs:

Run a BLAST with tabular output:

system("grep 'Cgla'" one_seq.blast);

Perl in a Day

2/5/12 Perl in a Day - Scripting 32

Embedding shell commands II
Multiple commands in sequence → script
Blast a yeast sequence against many fungi
system("blastn ... > one_seq.blast");

Find Candida glabrata hits
system("grep 'Cgla' one_seq.blast");

Benefits over running from command line:
· Easy to repeat (reproducible science)
· Easy to rerun with slightly different parameters
Easier if parameters are at the top of the program
· … or program asked us for them

Perl in a Day

2/5/12 Perl in a Day - Scripting 33

Exercise – Automate BLAST and grep
1.  Run the script to BLAST and grep
·  perl EX_Scripting_1.pl

2.  Now edit EX_Scripting_1.pl and change the
way you’re BLASTing and greping.

a)  How many Sklu hits are there?
b)  How many Kwal hits?
c)  BLAST with 1e-50 instead of 1e-4

How many Cgla hits do you get now?

·  Exercises are in exercises_UNIX/ or Windows/
·  Solutions are in solutions_UNIX/ or Windows/

Look for “# CHANGED” lines

Variables

Making Programs Reusable
by

 Storing and Manipulating Data

Perl in a Day

2/5/12 Perl in a Day - Variables 35

·  A box containing a single “thing” (value)
·  $e_value = 1e-4;
·  $string = "has spaces and $vars and \n";
·  $species = "";
·  References, objects

·  Has a name (label) starting with $
·  Value can change during a program

·  $species = "Cgla";
·  $species = "Ylip"; # later…

·  Variables encourage reusability
·  See variables.pl

Scalar Variables

$
$species

Cgla

Perl in a Day

2/5/12 Perl in a Day - Variables 36

Scalar Variables II – Declaring Variables

· Declare variables with my
· Tell the program there's a variable with that name
· my $e_value = 1e-4;
· Use my the first time you use a variable
· Don't have to give a value (default is "", but –w may warn)
· Avoid typos
· use strict;
· Put this at the top of (almost) any program
· Now Perl will complain if you use an undeclared variable
· $evalue = 1e-10; # "Global symbol…"
· Better to get parameters from the user…

Perl in a Day

2/5/12 Perl in a Day - Variables 37

Reading Variables – From the Keyboard

· See variables_ask.pl
· Use <> to read in a line of input from the keyboard
· $species = <>;
· Result gets placed in variable $species
· Typing Cgla and Enter yields same results as this code:

 $species = "Cgla\n";
· chomp() removes the newline (\n) from the input
· $species is now Cgla
· chomp() only removes a newline
· chomp() only removes newline at the end of a string

Perl in a Day

2/5/12 Perl in a Day - Variables 38

Reading Variables – From an Input File

· <> can also read from input files
· Specify input file(s) on the command line
· perl variables_ask.pl variables_ask.in
· Use <> for multiple files of the same type
· E.g., Multiple BLAST outputs, or multiple FASTA files

· <> reads data from files as if you typed it on the keyboard
· Saving input files → Reproducible Science!
· But this is a lot of work, for one or two options…

Perl in a Day

2/5/12 Perl in a Day - Introduction 39

Reading Variables – From the Command Line

· Getopt::Long
· A module (library of functionality someone else wrote)
· Allows you to input simple options on the command line
· perldoc Getopt::Long for (much) more information
· Using Getopt::Long
· use Getopt::Long; # use the module
· my $species = "Cgla"; # default value for variable
· GetOptions("spec=s" => \$species);
· spec means you can type -spec, -sp, -s on command line
· =s means text string (=i for integer, =f for “float” decimal)
· => is a fancy comma
· \$species is a "reference" (pointer) to $species variable

Perl in a Day

2/5/12 Perl in a Day - Introduction 40

Reading Variables – From the Command Line II

· See get_s_opt.pl
· Run it like this: perl get_s_opt.pl –s "Klac"
· Not like this: perl –s "Klac" get_s_opt.pl
· If also giving files: perl get_s_opt.pl –s "Klac" file1
· You can input multiple parameters
· Call GetOptions only once near beginning of program
· Tell GetOptions about all possible options
· GetOptions(
· "spec=s" => \$species,
· "blast=s" => \$run_blast

· );
· GetOptions will set $species and $run_blast (if user inputs -
blast and -spec)

Perl in a Day

2/5/12 Perl in a Day - Introduction 41

Getting output from shell commands
·  Use backquotes (``) around shell command
·  Runs the command (like system())
·  Gets the results in a variable
·  You get the standard output, i.e., what would have

been printed to the screen
·  (But standard error will still print to the screen)

·  You can embed $variables in the command

$date = `date`; # UNIX command: guess what it does?
print "The date is $date";
Note: returns a LONG string with \n's in it!
$blast = `blastn –task blastn –evalue $e_value …`

Perl in a Day

2/5/12 Perl in a Day - Introduction 42

Exercise – Variables and Inputting Options

1.  Input the E-value to use for BLAST from the user
·  Change EX_Variables_1.pl
·  Input E-value from the keyboard (before BLASTing!)
·  Using same program, input from a file (with two lines)
·  Input from two separate, one-line files. (Type file names

in the right order!)
2.  Use Getopt::Long
·  Start with EX_Variables_2.pl
·  Add –evalue parameter
·  E-value is a "float" (decimal number); use =f, not =s

Control Structures

Doing Things Lots of Times (Or Not)
using

Loops and Conditions

Perl in a Day

2/5/12 Perl in a Day - Introduction 44

Loops and Conditions – Why?

· So far we have seen only linear programs
· Flowcharts are more interesting (and realistic)
· Loops - do something more than once
· Conditions - do something sometimes, but not other times

· Combining loops and conditions correctly is a
major part of programming

Perl in a Day

2/5/12 Perl in a Day - Introduction 45

Conditions

if (condition) {
 do some stuff;
 and more stuff;
}

if ($run_blast eq "y") {
 my $db = "other_fungi";
 print "Blasting $db\n"; #works
 system("blastn –db $db …");
}
print $db; # ERROR. Unknown var

· Let's stop running BLAST every time
· Basic if statement:
· if (condition) is true…
· Run {BLOCK} of code

· No semicolon after beginning and end braces
· Blocks are often indented for ease of reading
· One or more commands inside BLOCK, separated by ;
· my variable inside a BLOCK will lose its value at end

Perl in a Day

2/5/12 Perl in a Day - Introduction 46

Conditions II – else

if (condition) {
 do some stuff;
}
else { # optional
 do other stuff;
}

if ($run_blast eq "y") {
 system("blastn …");
}
else {
 print "Not running blast";
}

· Let's warn user when we're not running BLAST
· else (if the condition wasn't true…)
· Run the code inside the else{BLOCK}

· else blocks are optional

Perl in a Day

2/5/12 Perl in a Day - Introduction 47

Conditions III – else if

if (condition) {
 do some stuff;
}
elsif (other cond.) { # optional
 do other stuff;
}
else { # optional
 do this instead;
 blocks can have >1 cmd
}

if ($run_blast eq "y") {
 system("blastn …");
}
elsif ($run_blast eq "n") {
 print "Use saved BLAST\n";
}
else {
 die "Illegal -b option\n";
}

· See if_run_blast.pl
· Only allow "y" or "n" as inputs –
· Otherwise die (exit with an error)
· You can have one or more elsif's after an if
· just if, if else, if elsif, if elsif else, if elsif elsif elsif …

Perl in a Day

2/5/12 Perl in a Day - Introduction 48

Comparisons for Conditions

· String (text) comparisons: eq ne gt lt ge le
· Made of letters so you know we’re comparing text

Compare gene names
if ($gene1 ne $gene2) {
 print "$gene1 and $gene2 are different";
}

Careful! "y" ne "Y"
if ($run_blast eq "y") { print "Yay!\n"; }

· When comparing strings, "0.1" ne ".1”
· How do we test for numerical equality?

Perl in a Day

2/5/12 Perl in a Day - Introduction 49

Comparisons for Conditions II
· Numeric Comparisons: == != > < >= <=
if ($num1 >= 0) {

print "$num1 is positive or zero\n";
}
if (0.1 == .1) {
 print ”Oh, good. It’s a numerical comparison\n”;
}

· Careful!
· Text strings have numeric value 0, so "ACTG" == "GCTA"

· Careful!
· = used to assign a variable: $num = 37;
· == used as a test: if ($num == 37) {…}

Perl in a Day

2/5/12 Perl in a Day - Introduction 50

Multiple Comparisons

if (($run_blast eq "y") || ($run_blast eq "Y")) {
 print "Running BLAST\n";
 system("blastn …");
}

· && means a logical AND (all pieces must be true)
· || means a logical OR (at least one piece is true)
· Group comparisons with parentheses

if (!(some complicated expression)) {
 print "It wasn't true";
}

· ! negates a condition

Perl in a Day

2/5/12 Perl in a Day - Introduction 51

Loops - foreach

foreach my $variable (list) {
 do some stuff;
 do more stuff; # …
}

".." is great for making lists

Find hits from several species
foreach my $species ("Cgla", "Klac") {
 print "Hits for $species\n";
 system("grep '$species' $blast_out");
}

Given sequence $DNA of any length
foreach my $i (1 .. length($DNA)) {
 print "Letter $i of the seq is ";
 print substr($DNA, $i-1, 1),"\n";
}

· A foreach loop loops over a (list)
· Sets a $variable to first value in (list)
· Runs a {BLOCK} using that value for the $variable
· Repeats loop for every value in the (list)

· See foreach.pl

Perl in a Day

2/5/12 Perl in a Day - Introduction 52

Loops II - while

while (condition) {
 do some stuff;
 then do other stuff;
}

Print numbers from 5 to 15 by fives
my $i = 5;
while ($i < 20) {
 print "$i ";
 $i = $i + 5;
}
Here, $i=20 BUT code never prints 20
If we tested $i <= 20, we’d print 20

· A while loop keeps running while a (condition) is true
· It checks the (condition)
· Runs code in the {BLOCK} if it was true
· Then checks again…
· It's sort of like foreach + if

Perl in a Day

2/5/12 Perl in a Day - Introduction 53

Loops III – Jumping Around

•  last jumps out of a loop
•  next skips to the {BLOCK} bottom, but then keeps looping
•  Note: if is NOT a loop - last / next ignore if blocks
my $count = 1;
while ($count <= 10) { # repeat for up to ten species
 print "Input species $count abbreviation, or Q to end: ";
 my $species = <>;
 chomp $species;
 if ($species eq "Q") { last; }
 elsif ($species eq "") {

 print "No species entered.\n";
 next; # no grep, counter doesn’t change. Ask again.

 }
 system("grep '$species' $blast_out");
 $count = $count + 1;
}

Perl in a Day

2/5/12 Perl in a Day - Introduction 54

Exercise – Loops and Conditions
1.  Write a program to BLAST/grep four files
·  Use "YAL001C.fasta", "YAL002W.fasta”, …
·  Hint: Add a loop to EX_Loops_1.pl

2.  Tell user what’s happening
·  Start with solution to EX_Loops_1.pl
·  If file is YAL002W.fasta, print “It’s my favorite sequence!”

3.  Input checking
·  If the user inputs an e-value other than 1e-4, then using

a stored BLAST output would be bad.
·  Make the program die if the user inputs -e not equal to

1e-4 and also inputs -b n
·  Hint: what compound condition do you need to test?
·  Start with EX_Loops_3.pl

Data Munging

Perl for Bioinformatics
or

Reading, Filtering, Merging,
Changing, and Writing Data

Perl in a Day

2/5/12 Perl in a Day - Math 56

Math
· Arithmetic operators: + - / * %

$a = 10 + 5; # $a is now 15
$a = $a + 20; # add 20 to the value of $a
$a += 20; # short cut, similarly -= /= *=
$a++; # shorter cut, same as $a+=1
$a = "hi" + 5; # $a=5. A text string counts as zero

· % is "modulus", or the remainder after division:
11 % 3 = 2, 12 % 3 = 0

Perl in a Day

2/5/12 Perl in a Day - Math 57

Math II - Functions
· A function takes one or more arguments
· Math functions: sqrt, exp, log, int, abs, …
· A function returns a value
· Set a variable equal to the return value
· Or print it
· Parentheses are optional (sometimes)
· Better to use them unless it's really obvious

$b = int(3.2); # Remove after the decimal. $b = 3
print int(-3.2); # (Or print int -3.2) prints -3
print int -3.2; # Same

Perl in a Day

2/5/12 Perl in a Day - Math 58

Math III – Precedence

· Parentheses are not optional (sometimes)

$a = 4*3 + 2; # $a=14
$a = 4 * 3+2; # oops! Spaces can be dangerous
$a = 4 * (3+2); # correct. $a = 20
quadratic equation
$x = (-$b + sqrt($b*$b - 4*$a*$c)) / (2*$a)

Perl in a Day

2/5/12 Perl in a Day - Text Functions 59

Text Functions – A Brief Overview
· "abc" . "def" → "abcdef"
· join(":", "a", "b", "c") → "a:b:c"
· split(/:/, "a:b:c") → "a", "b", "c"
· substr("abcdefghi", 2, 5) → "cdefg"
· reverse("ACTG") → "GTCA" # NOT complement!
· "ACCTTG" =~ s/T/U/g → "ACCUUG" # DNA->RNA
· "ACCTTG" =~ tr/ACGT/UGCA/ → "UGGAAC" # complement!
· length("abc") → 3
· lc("ACTG") → "actg" # uc does the opposite
· index("ACT", "TTTACTGAA") → 3 # -1 if not found
· Wow! (perldoc –f split, etc.)

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 60

Regular Expressions

· Patterns for searching a text string
· Does the string FOO appear in variable $x?
· if ($x =~ /FOO/) { print "Found FOO!" }
· True for $x="FOO", "aFOO", "FOOFOOFOO", "FOOLISH"
· False for $x="", "FO", "OOF", "foo", "F O O"
· Search for variables
· if ($line =~ /$species/) { print ”Got $species!" }
· Search for wildcards (see below)
· One of Perl's greatest strengths (powerful)
· One of Perl's greatest weaknesses (confusing)
· perldoc perlretut, perlreref, perlre

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 61

Regular Expressions II

· ̂ matches beginning of string, $ matches end
· Many special characters must be \quoted
· ^ $ () { } [] ? . @ + * / \
· I.e., \$ matches a literal dollar sign, not end of string
· \t tab \n newline \s (space,\t,\n) \S non-space \d digit

· /stuff/i - the 'i' option ignores case
· See match.pl

$x =~ /ACTTGG/ # Finds subsequence ACTTGG in $x
$x =~ /^M/ # Finds seq starting with methionine
$x =~ /*$/ # Sequence ends with stop codon
$x =~ /AACC/i # Find upper- or lower-case bases

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 62

Regular Expressions III
· | means or (sort of like ||)
· . matches any character except \n
· [ACT] means any one of A, C, or T. [A-Z] any upper case
· () save (part of) a match in magic variables $1, $2, etc.

·  Can also be used to group together - see next slide

/ACAG|ACCG/ # Matches a profile
/A.C/ # matches ABC, A1C, A C, A~C, but not AC, A\nC
if (/AC([AC])G/) { # Note: ACACG will NOT match
 print "Wobbly base was $1\n";
}

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 63

Regular Expressions IV
· + matches 1 or more copies of the previous thing
· * matches 0 or more copies of the previous thing
· ? matches if something appears or if it doesn't

/CG?CA/ # Finds sequence with or without deletion
if (/^>(\S+)/) {$id=$1} # FASTA ID (\S = non-space)

/ab?c/ /ab*c/ /ab+c/

ac ü ü X

abc ü ü ü

abbc X ü ü

/a(bc)?d/ /a(bc)*d/ /a(bc)+d/

ad ü ü X

abcd ü ü ü

abccd X X X

abcbcd X ü ü Note: /ab*/ matches ac!
 /^ab*$/ doesn’t match ac

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 64

Substitutions
· Replace first occurrence of FOO in variable $x with BAR
· $x =~ s/FOO/BAR/;
· "aaaFOObbbFOO" → "aaaBARbbbFOO"

· Replace all occurrences
· $x =~ s/FOO/BAR/g; # g stands for "global"
· "aaaFOObbbFOO" → "aaaBARbbbBAR"

· The thing to substitute can be a regular expression
· $x =~ s/a+/x/;
· "aaaFOObbbFOO" → "xFOObbbFOO"

· Matches are “greedy”
· $x =~ s/a.*F/x/;
· "aaaFOObbbFOO" → "aOO"

· If it can't find FOO, s/// does nothing
· $x =~ s/FOO/BAR/;
· "aaabbb" → "aaabbb"

Perl in a Day

2/5/12 Perl in a Day - Regular Expressions 65

Exercise – Regular Expressions

1.  Edit EX_Regexp_1.pl to die unless the user
inputs a valid species

· One upper-case letter followed by three lower-case letters
2.  Promise me you'll learn about regexps someday
· perldoc perlretut, perlreref, perlre
· "Mastering Regular Expressions" (O'Reilly)
· Or just start using them (carefully)

Perl in a Day

2/5/12 Perl in a Day - Input / Output 66

I/O Overview

· Filehandle
· A way to "hang on" to (name, refer to) a file
· Not the same as a file name
· Usually a name in all capital letters
· Open a filehandle to read from/write to a file
· <FILEHANDLE> reads a line from a file
· print FILEHANDLE … writes to a file
· Multiple read/write filehandles open at once
· Close filehandle when done reading/writing

Perl in a Day

2/5/12 Perl in a Day - Input / Output 67

Opening and Closing Files
· open(FILEHANDLE, "filename")
· Must be done before reading/writing a file
· Associates the file name with a filehandle
· "filename" is the same as "<filename" - read from file
· ">filename" - write to file
Note: > DELETES ANY PRIOR DATA IN THE FILE!
· ">>filename" - add to end of file. Doesn't delete anything.
· open(…) or die "Error: $!\n" helps diagnose problems

· close(FILEHANDLE)
· Finish writing/reading

Perl in a Day

2/5/12 Perl in a Day - Input / Output 68

Reading From Files

· $x = <FILEHANDLE>;
· Reads from a filehandle
· Gets one line at a time (by default)
· <STDIN> (abbreviated <>)
· Reads from the keyboard
· OR from files given as arguments to the script
 perl blah.pl file1 file2
· Automatically opened/closed

Perl in a Day

2/5/12 Perl in a Day - Input / Output 69

I/O: Reading from a file

open(BLAST, "<$blast_out")
 or die "Can't open $blast_out: $!\n";
$line = <BLAST>;
if ($line =~ /\t$species/) { # species name after a tab
 print $line;
}
close(BLAST);

· Let's replace UNIX grep with Perl regexps

· Great, but we're only reading one line
· Can we read multiple lines (without Repeating Code)?
· How do we know when the file is done?

Perl in a Day

2/5/12 Perl in a Day - Input / Output 70

I/O: Reading from a file II

open(BLAST, "<$blast_out")
 or die "Can't open $blast_out: $!\n";
while (defined(my $line = <BLAST>)) {
 if ($line =~ /\t$species/) { # species name after tab

 print $line;
 }
}
close(BLAST);

· Using a while loop with <FILEHANDLE>
· If there are no lines left, <FILEHANDLE> will return undef,
· undef is default value for variables (my $var;), not ""
· defined($line) is true EXCEPT if $line is undef
· See read_file.pl

Perl in a Day

2/5/12 Perl in a Day - Input / Output 71

Writing To Files
· print FILEHANDLE "string", $var, …
· Prints one or more things to a filehandle
· Remember to explicitly write "\n"'s
· Note: no comma between FILEHANDLE and stuff to print

· STDOUT
· print STDOUT … is the same as a regular print …
· Prints to screen even if one or more filehandles are open

· See write_file.pl
· Advanced: filehandles can be variables
· open(my $fh, ">", "file")
· print $fh "something”
· while (<$input_fh>) {…}

Perl in a Day

2/5/12 Perl in a Day - More Data Munging 72

Parsing BLAST Output with Regexps
· lcl|Scer--YAL036C Spar--ORFN:355 92.20 1103 86

 0 1 1103 1 1103 0.0 1459
· $line =~ /^\S+\t($species\S*)\t/ or die "Bad line $line";
· my $id = $1; pull out just the hit ID
· The regular expression we're searching with is:
· \S+ Multiple non-space chars
· \t a tab
· ($species\S*) species name, followed possibly by non-space
characters (AND parentheses save this string in $1)
· \t tab after the ID

· or die "…" exit informatively if we have unexpected format
· See get_hit_ids.pl

Perl in a Day

2/5/12 Perl in a Day - Input / Output 73

Exercises – Input/Output and Munging

1.  Write Cgla results to Cgla_hits.txt and Sklu
results to Sklu_hits.txt

· Change EX_Munging_1.pl
· The easy way: read BLAST results twice
· Slightly harder: read BLAST results only once
· (Hint: you can have multiple input or output files open at the same
time, as long as they have different filehandles)
· Solutions are SOL_Munging_1a.pl and SOL_Munging_1b.pl

2.  Edit EX_Munging_2.pl to also get the percent
identity (next column after ID)

The Scriptome

Advanced Data Munging for Beginners
or

Perl for Wimps Busy Biologists

Perl in a Day

2/5/12 Perl in a Day - More Data Munging 75

·  Many functions act on $_ by default
·  print prints $_
·  chomp() removes \n from end of $_
·  while(<HANDLE>) reads lines into $_

·  Same as while(defined($_=<HANDLE>))
·  <> only reads into $_ inside a while()!

·  /a/ matches against $_(no =~ necessary)
·  s/A/B/ substitutes B for A in $_

·  If you can't find a variable, assume it's $_
·  Give variables descriptive names

The Default Variable $_

Perl in a Day

2/5/12 Perl in a Day - More Data Munging 76

One-Liners

· Perl has shortcuts for data munging
· (You won't be tested on this!)
· fancy grep with full Perl functionality: get FASTA IDs
perl -wlne 'if (/^>(\S+)/) {print $1}' a.fasta > IDs
· sed+awk with Perl functionality
perl -wpe 's/^\S+\t(Cgla--\S+).*/$1/' blast.out > IDs
· Add line numbers to a file
perl -wpe 's/^/$.\t/' blah.txt > blah_lines.txt
· Count times each value is in col 3 (tab-separated)
perl -wlanF"\t" -e '$h{$F[2]}++; END { foreach (keys
%h) {print "$_\t$h{$_}"}}' blah.tab > count.tab

Perl in a Day

2/5/12 Perl in a Day - More Data Munging 77

One-Liners II: Serious Data Munging
· With practice, you can explore your data quickly
· Much faster than opening up a graphing program
· Also good for "sanity checking" your results

· Choose best BLAST hit for each query sequence
perl -e '$name_col=0;$score_col=1; while(<>) {s/\r?\n//;
@F=split /\t/, $_; ($n, $s) = @F[$name_col, $score_col]; if (!
exists($max{$n})) {push @names, $n}; if (! exists($max{$n}) || $s
> $max{$n}) {$max{$n} = $s; $best{$n} = ()}; if ($s == $max{$n})
{$best{$n} .= "$_\n"};} for $n (@names) {print $best{$n}}' infile

> outfile

Perl in a Day

2/5/12 Perl in a Day - Input / Output 78

Scriptome Motivation

· "You can't possibly learn Perl in a day "
· "But I need to get work done!"
· "If only someone would do all the work for me…"

Perl in a Day

2/5/12 Perl in a Day - Input / Output 79

The Scriptome In One Slide

· Scriptome: cookbook of Perl one-liners
· No programming needed
· No install needed (if you have Perl)
· No memorization needed

· sysbio.harvard.edu/csb/resources/computational/scriptome
· Read the instructions
· Find BLAST results with > 80% identity (3rd col.=2)
· Expand code to see how it's done
· Build a protocol

Perl in a Day

Sample Scriptome Manipulations

· Manipulate FASTAs
· Filter large BLAST result sets
· Merge gene lists from different experiments
· Translate IDs between different databases
· Calculate 9000 orthologs between two species of
Drosophila

· Please (please!) contact me about using Scriptome

2/5/12 Perl in a Day - Introduction 80

Perl in a Day

(Odyssey) Scriptome on the Command Line
· Odyssey has shortcuts for running Scriptome Tools

·  More powerful; a bit more work
· module load bio/hpc_data_tools
· List all “change” tools on the Scriptome website
Scriptome -t change
· Run a tool
Scriptome -t change_fasta_to_tab allY.fasta > Y.tab
· Program will ask you for parameters, if needed
Scriptome -t choose_cols Y.tab > ids.txt
·  Voilà! Easy way to get FASTA IDs

· Or set parameters on command line: scriptable
Scriptome -t choose_cols -p '@cols=(0, 1, -2, 2)'
one_seq.blast > short.tab
· ScriptPack: runs on your laptop

·  Available on website Resources page

2/5/12 Perl in a Day - Introduction 81

Perl in a Day

2/5/12 Perl in a Day - Hashes 82

Exercises – Scriptome
1.  Print BLAST hits from one_seq.blast with 80 – 85%

identity (see EX_Scriptome_1.txt)
2.  Use the Scriptome to change allY.fasta, which contains

four sequences, to tabular format. (see
EX_Scriptome_2.txt)

Arrays and Hashes

Groups of Things
for

High Throughput Munging

Perl in a Day

2/5/12 Perl in a Day - Arrays 84

Why Arrays?

· What if we want to store the hit IDs?
· Further analysis
· Different kinds of filtering
· Printing out
· We don't want to read the file multiple times!
· Store the IDs in an array

Perl in a Day

2/5/12 Perl in a Day - Arrays 85

·  A box containing a set of “things”
·  @bs = (35, 47, -10, 6);
·  @strings = ("a", "b", "cde");
·  @scalars = ($a, $b, $c);

·  Array names start with @
·  Best for many of the same kind of data

·  A set of sequences, a set of fold change values
·  Do the same thing to each array member
·  Filter to find certain useful members

Arrays

@

Perl in a Day

2/5/12 Perl in a Day - Arrays 86

·  Each thing in an array is like a scalar variable
·  So each scalar has a name that starts with $
·  It also has an index (number) to identify it
·  Indexes start from ZERO
·  @bs = (35, 47, -10, 6);
·  print $bs[2] # -10. Note the $
·  print @bs # 3547-106. Note the @

Arrays II – Accessing the Insides

@bs

35 47 -10 6

$bs[0] $bs[1] $bs[2] $bs[3]

Perl in a Day

2/5/12 Perl in a Day - Arrays 87

A single value in the array can change.
·  @letters = ("a", "b", "c", "d");
·  $letters[2] = "x";
·  print @letters; # abxd

An array's size can change (unlike FORTRAN, C)
·  @nums = (9,8,7);
·  $nums[3] = 6;
·  print @nums; # 9876
·  push @nums, 5; # push onto end - 98765
·  pop @nums; # pop off of the end - 9876
·  print scalar (@nums); # Array size = 4

Arrays III – Manipulating

Perl in a Day

2/5/12 Perl in a Day - Arrays 88

Playing with Arrays

· split() splits a string into pieces
· Let's split our BLAST hits into columns
· my @cols = split /\t/, $line;
· Now easily access percent identity, target ID, etc.
· lcl|Scer--YAL036C Spar--ORFN:355 92.20 1103 86

 0 1 1103 1 1103 0.0 1459
· my $percent_identity = $cols[2]; # count from 0!
· print "Score: $cols[-1]\n"; # -1 is last thing in array
· # Set multiple scalars from a "slice" of an array
my ($subj_id, $pct_ident, $align_len) = @cols[1..3];

· See get_hit_cols.pl

Perl in a Day

2/5/12 Perl in a Day - Arrays 89

The Magical Array @ARGV
· @ARGV holds any arguments you gave your Perl script
· perl script.pl 73 abc "Amir Karger" myfile.txt
· my $num = $ARGV[0]; # 73
· my $str = $ARGV[1]; # "abc"
· my $name = $ARGV[2]; # "Amir Karger"
· my $file = $ARGV[3]; # "myfile.txt"
· OR my ($num, $str, $name, $file) = @ARGV;
· TMTOWTDI: parse @ARGV instead of using Getopt::Long
· Getopt::Long will only remove –options. Files will still be in @ARGV

· shift(@ARGV) removes $ARGV[0]
· shift() with no argument acts on @ARGV
· BUT in a subroutine, shift() acts on @_

Perl in a Day

2/5/12 Perl in a Day - Hashes 90

Why Hashes?

· Searching an array for a given value is slow
· Array indexes must be numbers – IDs are strings
· "A gene" has many associated pieces of data
· Name
· Alternate name(s)
· Disease association(s)
· English description
· Coded protein(s)
· Storing diverse types of data in one array is messy
· Why can't we have arrays with string indexes?

Perl in a Day

2/5/12 Perl in a Day - Hashes 91

·  A box containing a set of key/value pairs
·  Only one value per key (simple case)

·  Give it a key, it returns a value
·  What NCBI ID represents "BRCA1"?
·  What amino acid does "ATG" code for?
·  What is the "DE" part of this Uniprot record?

http://us.expasy.org/uniprot/Q92560
·  Hash names start with %

Hashes

%

Perl in a Day

2/5/12 Perl in a Day - Hashes 92

%hash = (key1=>val1, key2=>val2, ...)
Hashes II - Declaration

%up = (
 "AC" => "P30443",
 "ID" => "1A01_HUMAN",
 "DE" => "HLA class I…",
);

%translate = (
 "ATG" => "M", "GGT" => "G",
 "CAT" => "H", "TAG" => "*",
); # etc. . .
print "ATG encodes $translate{'ATG'}";
ATG encodes M

%up

P30443 1A01_HUMAN HLA class I
histocompatibility antigen...

$up{AC} $up{ID} $up{DE}

Perl in a Day

2/5/12 Perl in a Day - Hashes 93

Hashes III - Usage
· Accessing hashes
· When looking at a whole hash, %hash
keys(%hash) gets all keys in the hash
· When accessing one value, $hash{key}
· Setting one value: $hash{key} = value;
· Hashes vs. arrays
· Hashes are NOT in any order
· BUT you can get to a value instantly instead of searching
through an array
· Keys are usually text strings, not numbers
· See unique_hits.pl

Perl in a Day

2/5/12 Perl in a Day - Hashes 94

Hashes IV – Common Hash Uses
· Translation table (codons, sequence IDs, etc.)
· Storing complicated records
· Uniprot: store and manipulate ID, AC, DE separately
· BLAST hits: manipulate ID, % identity, etc. separately
· my %hit = ("ID" => $cols[1], "pct_id" => $cols[2], …);

· See if we know about a particular thing
· if (! exists $known_ID{$ID}}) { do stuff…}

· Make things unique (only one value per key)
· Read lines into %hash, look at keys(%hash)

Perl in a Day

2/5/12 Perl in a Day - Hashes 95

Exercises – Arrays and Hashes

1.  Edit EX_Array_1.pl to print hits of any species
with percent identity (third column) between 80
and 85

2.  EX_Array_2.pl puts data from various columns
(see "Hashes IV" above) into a %hit hash.
Change the program to use that hash in the if
and print statements in the while loop.

Perl in a Day

2/5/12 Perl in a Day - Introduction 96

Class Overview

· Introduction – Why learn Perl?
· Scripting – Reproducible Science
· Variables – Making Programs Reusable
· Control Structures – Doing Things Lots of Times (Or Not)
· Data Munging – Perl for Bioinformatics
· Arrays and Hashes – Groups of Things
· The Scriptome –Data Munging for Perl Beginners
· Subroutines & Modules – Making Programs Really Reusable
· Objects – Complex Data, Complex Workflow
· BioPerl – Doing (More) Bio With Perl

Subroutines and Modules

Making Programs Really Reusable
by

Creating New Functions

Perl in a Day

2/5/12 Perl in a Day - Subroutines 98

Subroutines – Why?

· Harder to read larger program
· What if there’s a bug (TAG only)? Update every copy

my $dna1 = "CCGGCCGGAGTTCTTAGGCGTAGCCGGCCGG"; # UTR+CDS
(Shortest possible exon: +? is a "non-greedy" +)
$dna1 =~ /(ATG(...)+?)TAG/; # start codon, 3N bp, stop
my $len = length($1)/3; # length of translated protein

Later…
my $dna2 = <FASTA>; # Read in DNA from FASTA file

Do the same thing to the new sequence
$dna2 =~ /(ATG(...)+?)TAG/;
$len = length($1)/3;

Perl in a Day

2/5/12 Perl in a Day - Subroutines 99

Subroutines – Example

· Only one copy of the code
· Main program becomes shorter and simpler

my $dna1 = "CCGGCCGGAGTTCTTAGGCGTAGCCGGCCGG";
my $len = &get_translated_length($dna1); # call sub
print "DNA with UTR: $dna1. Protein length: $len\n";

my $dna2 = <FASTA>;
Call the subroutine again, with a different argument
$len = &get_translated_length($dna2); print $len;

sub get_translated_length {
 my ($dna) = @_; # changing $dna won't change $dna1
 $dna =~ /(AGT(...)+?)TAG/; # Remove stop codon,3' UTR
 my $plen = length($1)/3; # resulting protein length
 return $plen;
}

Perl in a Day

2/5/12 Perl in a Day - Subroutines 100

Subroutines – View from the Outside
· Subroutines: write your own Perl functions
· main program calls subroutine
&get_translated_length
· Ampersand is optional
· It passes zero or more arguments ($dna1)
· Parentheses are (sometimes) optional
· Code in the subroutine gets executed
· Subroutine returns results to caller
· Perl subroutines can return multiple values
· Some subroutines return no values

Perl in a Day

2/5/12 Perl in a Day - Subroutines 101

Subroutines – View from the Inside
Comments describe the subroutine

sub some_name { - starts a subroutine
 # Local copies of the arguments

 my ($thing, $other) = @_; - gets the arguments
 # Put fancy code here… - calculates, prints,
 # More code… does other stuff
 # More calls other subroutines?
 return ($first, $second); - returns stuff to caller
} - ends subroutine

· Some people use @_ or $_[0]… in subs - careful!
· See sub.pl

Perl in a Day

2/5/12 Perl in a Day - Subroutines 102

Subroutines – Extra credit/FYI
· Alternate way to get the arguments inside the subroutine
· my $thing = shift;
· shift is like pop, but pulls out $array[0]
· Inside a subroutine, shift() does shift(@_)
· I.e., put the first argument to the subroutine into $thing

· Passing 1 array/ hash to a sub: easy. Make it the last arg
· call_sub($a, $b, @c); Pass array to sub
· my ($arg_a, $arg_b, @arg_c) = @_; Get args inside sub

· Passing 2 arrays/hashes: harder. perldoc perlreftut
· call_sub(\@arr1, \@arr2); References “pack” arrays into scalars
· my ($ref1, $ref2) = @_; Get (scalar) args inside sub
· @in_array1 = @$ref1; Unpack references - scalar back into array

Perl in a Day

2/5/12 Perl in a Day - Subroutines 103

Subroutines – Organizing Code By Function
· Code reuse
· Call same subroutine from different parts of your program
· More general: $len = &get_protein_length($dna, $remove);
· Organization
· E.g., separate messy math from main program flow
· Each subroutine can only mess up its own variables
· Easier testing
· Test subroutine code separately
· Increased efficiency
· Write code just once, optimize just one sub
· Coder's Creed: Never write the same code twice

Perl in a Day

2/5/12 Perl in a Day - Modules 104

Modules

· A set of related subroutines
· Placed in a separate file
· Included in the original file with the use command
· We've been using modules all day
· use Getopt::Long;
· Reads in the file /usr/…/perl5/…/Getopt/Long.pm
· Now &GetOptions() acts like a regular Perl function
· perldoc Getopt::Long gets module documentation
· Documentation is stored inside the module
· POD, a very simple HTML-ish language

· strict is a special module called a "pragma"

Perl in a Day

2/5/12 Perl in a Day - Modules 105

Modules II

· Getting new modules
· Thousands of modules available at www.cpan.org
· search.cpan.org (E.g., search for "transcription factor")
· Usually simple to install
· Basically, installation places .pm file(s) in /usr/…
· Or a different directory Perl knows to look in
· Benefits (like subroutine benefits, but more so)
· Organization: separate a set of functionality
· Code reuse: don't have to re-write code for every program
· "Good composers borrow; great composers steal." -Stravinsky?

· Modules also give you access to new classes…

Perl in a Day

2/5/12 Perl in a Day - Modules 106

Exercise – Subroutines
· Move BLAST (and deciding whether to run) to a subroutine
· &maybe_run_blast($run_blast, $fasta_in, $e_value,
$blast_out);
· Now our main program is much easier to read:

GetOptions(…);

&maybe_run_blast($run_blast, $fasta_in, $e_value, $blast_out);

foreach $species ("Cgla", "Sklu") {
 &analyze_blast($species, $blast_out, $unique_hits);
}
exit;

Objects and Classes

Complex Data, Complex Workflow
or

How to Write Big Perl Programs
Without Going Crazy

Perl in a Day

2/5/12 Perl in a Day - Objects and Classes 108

Objects
· Scalar variables storing multiple pieces of data
· $uniprot_seq stores a whole Uniprot record
· Easier than keeping track of complicated hashes
· Store many Uniprot records in a hash/array
· Variables that can do things (by calling methods)
· $uniprot_seq->id gets the ID
· Like &id($uniprot_seq), but better (see below)
· $rev = $uniprot_seq->revcom reverse complements

Perl in a Day

2/5/12 Perl in a Day - Objects and Classes 109

Objects II – Bio objects
· Bioperl objects store biological information
· Bioperl objects do biological things

use Bio::Seq;

$seq is a Bio::Seq object, which represents a sequence
along with associated data...
print "Raw sequence: ", $seq->seq(); # Just a regular string
print "Species is ", $seq->species();

Object's sub-pieces can be objects too!
@features = $seq->get_SeqFeatures(); # Coding sequences, SNPs, …
foreach $feat (@features) {
 print $feat->primary_tag, " starts at ",$feat->start\n";
}

Perl in a Day

2/5/12 Perl in a Day - Objects and Classes 110

Classes

· Really just a fancy module
· Every object belongs to one or more classes
· What kind of object is it?
· Sequence, Feature, Annotation, Tree...
· What fields will this object have?
· species, start/end, text, subtrees
· What can I DO with this object?
· I.e., what methods can I call?
· id, get_SeqFeatures, set_root_node

Perl in a Day

2/5/12 Perl in a Day - Objects and Classes 111

Classes II – Bio Classes

· Bioperl classes have Bioperl objects in them, which
· Store biological information
· Do biological things

Bio::Seq object $seq can DO things, not just hold information
use Bio::Seq;
print "Sequence from 1 to 100: ", $seq->subseq(1,100);

You can chain -> method calls.
revcom returns Bio::Seq object. revcom->seq returns raw sequence
$rev_comp = $seq->revcom->seq();
print "Reverse comp. from 1 to 100:", $seq->revcom->subseq(1, 100);

Perl in a Day

2/5/12 Perl in a Day - Objects and Classes 112

Object Oriented Programming – Who Cares?

· Different classes can have totally different ways to
implement the id method
· User doesn't have to care!
· Crucial for large programs

· Each object "automagically" does the right thing
· Because each object knows which class it belongs to

· Congratulations: you're now an OOP expert!

User has pulled in sequences from different
databases
my @seqs = ($uniprot_seq, $EMBL_seq, $GenBank_seq);

foreach my $seq (@seqs) {
 print $seq->id;
 print $seq->description;
}

Bioperl

Doing (More) Bio with Perl
by

Stealing Using Collected Wisdom

Perl in a Day

2/5/12 Perl in a Day - Bioperl 114

BioPerl Overview

· Modules useful for doing bioinformatics in Perl
· Many specialized modules (Annotation, Parsing,
Running BLAST, Phylogenetic Trees, …)
· Many scripts
· ls /odyssey/apps/perl5mods/bin/bp*.pl on Odyssey
· perldoc –F `which bp_seq_length.pl`

· Can be a bit overwhelming
· Huge (> 800,000 lines of code, 2010)
· Mostly uses objects
· Documentation not always easy

Perl in a Day

2/5/12 Perl in a Day - Bioperl 115

BioPerl Tutorial TOC
 . Using bioperl
 .1 Accessing sequence data from local and remote databases
 .1.1 Accessing remote databases (Bio::DB::GenBank, etc)
 .1.2 Indexing and accessing local databases (Bio::Index::*, bp_index.pl, bp_fetch.pl)
 .2 Transforming formats of database/ file records
 .2.1 Transforming sequence files (SeqIO)
 .2.2 Transforming alignment files (AlignIO)
 .3 Manipulating sequences
 .3.1 Manipulating sequence data with Seq methods (Seq)
 .3.2 Obtaining basic sequence statistics (SeqStats,SeqWord)
 .3.3 Identifying restriction enzyme sites (Bio::Restriction)
 .3.4 Identifying amino acid cleavage sites (Sigcleave)
 .3.5 Miscellaneous sequence utilities: OddCodes, SeqPattern
 .3.6 Converting coordinate systems (Coordinate::Pair, RelSegment)
 .4 Searching for similar sequences
 .4.1 Running BLAST remotely (using RemoteBlast.pm)
 .4.2 Parsing BLAST and FASTA reports with Search and SearchIO
 .4.3 Parsing BLAST reports with BPlite, BPpsilite, and BPbl2seq
 .4.4 Parsing HMM reports (HMMER::Results, SearchIO)
 .4.5 Running BLAST locally (StandAloneBlast)
 .5 Manipulating sequence alignments (SimpleAlign)

Perl in a Day

2/5/12 Perl in a Day - Bioperl 116

BioPerl Tutorial TOC II
.6 Searching for genes and other structures on genomic DNA (Genscan, Sim4, ESTScan, MZEF,
Grail, Genemark, EPCR)

 .7 Developing machine readable sequence annotations
 .7.1 Representing sequence annotations (SeqFeature,RichSeq,Location)
 .7.2 Representing sequence annotations (Annotation::Collection)
 .7.3 Representing large sequences (LargeSeq)
 .7.4 Representing changing sequences (LiveSeq)
 .7.5 Representing related sequences - mutations, polymorphisms (Allele, SeqDiff)
 .7.6 Incorporating quality data in sequence annotation (SeqWithQuality)
 .7.7 Sequence XML representations - generation and parsing (SeqIO::game)
 .7.8 Representing Sequence Features using GFF (Bio:Tools:GFF)
 .8 Manipulating clusters of sequences (Cluster, ClusterIO)
 .9 Representing non-sequence data in Bioperl: structures, trees, maps, graphics and
bibliographic text

 .9.1 Using 3D structure objects and reading PDB files (StructureI, Structure::IO)
 .9.2 Tree objects and phylogenetic trees (Tree::Tree, TreeIO, PAML.pm)
 .9.3 Map objects for manipulating genetic maps (Map::MapI, MapIO)
 .9.4 Bibliographic objects for querying bibliographic databases (Biblio)
 .9.5 Graphics objects for representing sequence objects as images (Graphics)
 .10 Bioperl alphabets
 .10.1 Extended DNA / RNA alphabet
 .10.2 Amino Acid alphabet

Perl in a Day

2/5/12 Perl in a Day - Bioperl 117

Bio::Perl - Easy Bioperl

•  get_sequence get a sequence from Internet databases
•  read_sequence read a sequence from a file
•  read_all_sequences read all sequences from a file
•  new_sequence make a Bio::Seq object from a string
•  write_sequence write one or more sequences to a file
•  translate translate a sequence. Return an object
•  translate_as_string translate a sequence. Return a string
•  blast_sequence BLAST a sequence using NCBI computers
•  write_blast write a BLAST report out to a file

•  Bio::Perl provides simple access functions.
• Much easier than the rest of Bioperl
• Much less functionality

Perl in a Day

2/5/12 Perl in a Day - Bioperl 118

Bio::Perl II - Getting Sequences

use Bio::Perl;

only works if you have an internet connection
$seq_object = get_sequence("embl","AI129902");

write_sequence(">cdna.fasta","fasta",$seq_object);

Retrieve EMBL sequence, write it out in FASTA format

What could you do with while()? (Careful!)

Perl in a Day

2/5/12 Perl in a Day - Bioperl 119

Bio::Perl III - Automated BLAST

use Bio::Perl;

$seq_object = get_sequence("embl","AI129902");

uses the default database - nr in this case
$blast_result = blast_sequence($seq);

write results to a file
write_blast(">cdna.blast",$blast_result);

BLAST sequence at NCBI using default “nr” database

Perl in a Day

2/5/12 Perl in a Day - Bioperl 120

BioPerl - Objects
· Bio::Seq: main sequence object
· Available when sequence file is read by Bio::SeqIO
· It has many methods - perldoc Bio::Seq
Make a new Bio::SeqIO object $myseqs
by opening a file for reading
#(This command doesn't actually read any sequences)
$myseqs = Bio::SeqIO->new(
 '-file' => "<inputFileName", '-format' => 'Fasta'
);

Get next (i.e., first) seq in Bio::SeqIO object
$seqobj is a Bio::Seq object
$seqobj = $myseqs->next_seq();

Perl in a Day

2/5/12 Perl in a Day - Bioperl 121

BioPerl - SeqIO and Seq

· Bio::SeqIO: Sequence input/output
· Formats: Fasta, EMBL, GenBank, uniprot, PIR, GCG, …
· Parse GenBank sequence features: CDS, SNPs, Region
· Uses Bio::Seq objects instead of storing only sequence
bp in scalar text strings

· Bio::Seq: sequence manipulation
· subsequence
· translation
· reverse complement, and much more

· See gb2fastas.pl

Perl in a Day

2/5/12 Perl in a Day - Bioperl 122

BioPerl - SeqIO and Seq II
#Using SeqIO and Seq
use Bio::SeqIO;
use Bio::Seq;
$in = Bio::SeqIO->new(-file=>"<$fin", "-format"=>"Fasta");
$out =
 Bio::SeqIO->new(-file => ">$fout", "-format" => "EMBL");
while ($seq = $in->next_seq()) {
 $out->write_seq($seq); # print sequence to $out
 print "Raw sequence:", $seq->seq();
 print "Sequence from 1 to 100: ", $seq->subseq(1,100);
 print "Type of sequence: ", $seq->moltype, "\n";
 if ($type eq "dna") {
 print "Reverse comp: ", $seq->revcom->seq(), "\n";
 print "Revcom 1-100:",$seq->revcom->subseq(1, 100);
 }
}

Perl in a Day

2/5/12 Perl in a Day - Bioperl 123

BioPerl - BPlite

· BPlite: Blast Parser "lite“
· BLAST -outfmt 6 doesn't actually give us alignments
· But BLAST output is Hard! (see one_seq.long_blast)
· One of several BLAST parsers available
· Each matching sequence can have multiple matching
regions ("hsp", high scoring pair)
use Bio::Tools::BPlite;
$report = new Bio::Tools::BPlite(-file=>"$inFile");
while(my $sbjct = $report->nextSbjct) {
 while (my $hsp = $sbjct->nextHSP) {
 print $hsp->subject->seqname;
 }
}

Perl in a Day

2/5/12 Perl in a Day - Bioperl 124

Bioperl - Codon Tables

· Bioperl::Tools::CodonTable
· Translate/reverse translate codons & amino acids
· Handles alternate codon tables
· See codon_table.pl
· Also includes is_start_codon, is_ter_codon
· Use these codon tables to translate Bio::Seqs

Perl in a Day

2/5/12 Perl in a Day - The Future 125

What’s missing

· More Bioperl, regexps, functions, OOP, ...
· Testing, debugging and proactive error checking
· Context and other shortcuts
· $line = <FILE> reads just one line
· @foo = <FILE> reads an entire file into an array
· Databases and web programming
· Graphics
· Perl Golf and Obfuscated Perl
· perl –le '$_*=$`%9e9,//for+1=~/0*$/..pop;print$`%10' 10

· Etc.

Perl in a Day

2/5/12 Perl in a Day - The Future 126

Resources for After the Class
· akarger@cgr.harvard.edu
· perldoc perl (see "Tutorials" section)
· perlintro, perltut, perlfunc, perlretut, perlboot

· http://bip.weizmann.ac.il/course/prog/
· HUNDREDS of slides - many bio-related examples
· Also look at "assignments" for practice

· http://www.oreilly.com/catalog/begperlbio/ and .../learnperl4
· Beginning Perl for Bioinformatics is designed for biologists. (It has a
sequel, too.)
· Learning Perl is more general, but gets rave reviews

Perl in a Day

2/5/12 Perl in a Day - The Future 127

Resources for After the Class II
· search.cpan.org
· 9000 modules and counting

· http://www.bioperl.org
· Especially look at (and do) bptutorial
· "Howtos" describe Sequence Analysis, Phylogenetics, etc. w/ Bioperl
with lots of stealable sample code
· bioperl-l@bioperl.org - ask questions to experts.

· http://www.pasteur.fr/recherche/unites/sis/formation/bioperl/
· Big Bioperl course, with lots of examples and exercises

· The Scriptome
· http://sysbio.harvard.edu/csb/resources/computational/scriptome

