A Redox-flow Battery with an Alloxazine-based Organic Electrolyte


Odyssey helps researchers create the next generation of energy storage systems. Using organic electrolytes, a redox-flow battery offers many benefits and improvements over current energy storage schemes using more environmentally-friendly compounds.

Excerpt: Redox-flow batteries (RFBs) can store large amounts of electrical energy from variable sources, such as solar and wind. Recently, redox-active organic molecules in aqueous RFBs have drawn substantial attention due to their rapid kinetics and low membrane crossover rates. Drawing inspiration from nature, here we report a high-performance aqueous RFB utilizing an organic redox compound, alloxazine, which is a tautomer of the isoalloxazine backbone of vitamin B2. It can be synthesized in high yield at room temperature by single-step coupling of inexpensive o-phenylenediamine derivatives and alloxan... As an aza-aromatic molecule that undergoes reversible redox cycling in aqueous electrolyte, alloxazine represents a class of radical-free redox-active organics for use in large-scale energy storage.

Read more at Nature Energy